74 research outputs found

    The impact of the Geometric Correction Scheme on MEG functional topology at rest

    Get PDF
    Spontaneous activity is correlated across brain regions in large scale networks (RSN) closely resembling those recruited during several behavioral tasks and characterized by functional specialization and dynamic integration. Specifically, MEG studies revealed a set of central regions (dynamic core) possibly facilitating communication among differently specialized brain systems. However, source projected MEG signals, due to the fundamentally ill-posed inverse problem, are affected by spatial leakage, leading to the estimation of spurious, blurred connections that may affect the topological properties of brain networks and their integration. To reduce leakage effects, several correction schemes have been proposed including the Geometric Correction Scheme (GCS) whose theory, simulations and empirical results on topography of a few RSNs were already presented. However, its impact on the estimation of fundamental graph measures used to describe the architecture of interactions among brain regions has not been investigated yet. Here, we estimated dense, MEG band-limited power connectomes in theta, alpha, beta, and gamma bands from 13 healthy subjects (all young adults). We compared the connectivity and topology of MEG uncorrected and GCS-corrected connectomes. The use of GCS considerably reorganized the topology of connectivity, reducing the local, within-hemisphere interactions mainly in the beta and gamma bands and increasing across-hemisphere interactions mainly in the alpha and beta bands. Moreover, the number of hubs decreased in the alpha and beta bands, but the centrality of some fundamental regions such as the Posterior Cingulate Cortex (PCC), Supplementary Motor Area (SMA) and Middle Prefrontal Cortex (MPFC) remained strong in all bands, associated to an increase of the Global Efficiency and a decrease of Modularity. As a comparison, we applied orthogonalization on connectomes and ran the same topological analyses. The correlation values were considerably reduced, and orthogonalization mainly decreased local within-hemisphere interactions in all bands, similarly to GCS. Notably, the centrality of the PCC, SMA and MPFC was preserved in all bands, as for GCS, together with other hubs in the posterior parietal regions. Overall, leakage correction removes spurious local connections, but confirms the role of dynamic hub regions, specifically the anterior and posterior cingulate, in integrating information in the brain at rest

    Dynamics of EEG rhythms support distinct visual selection mechanisms in parietal cortex: A simultaneous transcranial magnetic stimulation and EEG study

    Get PDF
    Using repetitive transcranial magnetic stimulation (rTMS), we have recently shown a functional anatomical distinction in human parietal cortex between regions involved in maintaining attention to a location [ventral intraparietal sulcus (vIPS)] and a region involved in shifting attention between locations [medial superior parietal lobule (mSPL)]. In particular, while rTMS interference over vIPS impaired target discrimination at contralateral attended locations, interference over mSPL affected performance following shifts of attention regardless of the visual field (Capotosto et al., 2013). Here, using rTMS interference in conjunction with EEG recordings of brain rhythms during the presentation of cues that indicate to either shift or maintain spatial attention, we tested whether this functional anatomical segregation involves different mechanisms of rhythm synchronization. The transient inactivation of vIPS reduced the amplitude of the expected parieto-occipital low-alpha (8 - 10 Hz) desynchronization contralateral to the cued location. Conversely, the transient inactivation of mSPL, compared with vIPS, reduced the high-alpha (10 - 12 Hz) desynchronization induced by shifting attention into both visual fields. Furthermore, rTMS induced a frequency-specific delay of task-related modulation of brain rhythms. Specifically, rTMS over vIPS or mSPL during maintenance (stay cues) or shifting (shift cues) of spatial attention, respectively, caused a delay of alpha parieto-occipital desynchronization. Moreover, rTMS over vIPS during stay cues caused a delay of delta (2-4 Hz) frontocentral synchronization. These findings further support the anatomo-functional subdivision of the dorsal attention network in subsystems devoted to shifting or maintaining covert visuospatial attention and indicate that these mechanisms operate in different frequency channels linking frontal to parieto-occipital visual regions

    Being an agent or an observer: Different spectral dynamics revealed by MEG

    Get PDF
    Several neuroimaging studies reported that a common set of regions is recruited during action observation and execution and it has been proposed that the modulation of the μ rhythm, in terms of oscillations in the alpha and beta bands might represent the electrophysiological correlate of the underlying brain mechanisms. However, the specific functional role of these bands within the μ rhythm is still unclear. Here, we used magnetoencephalography (MEG) to analyze the spectral and temporal properties of the alpha and beta bands in healthy subjects during an action observation and execution task. We associated the modulation of the alpha and beta power to a broad action observation network comprising several parieto-frontal areas previously detected in fMRI studies. Of note, we observed a dissociation between alpha and beta bands with a slow-down of beta oscillations compared to alpha during action observation. We hypothesize that this segregation is linked to a different sequence of information processing and we interpret these modulations in terms of internal models (forward and inverse). In fact, these processes showed opposite temporal sequences of occurrence: anterior-posterior during action (both in alpha and beta bands) and roughly posterior-anterior during observation (in the alpha band). The observed differentiation between alpha and beta suggests that these two bands might pursue different functions in the action observation and execution processes

    Anatomical segregation of visual selection mechanisms in human parietal cortex

    Get PDF
    none8siVisual selection requires mechanisms for representing object salience and for shifting the focus of processing to novel objects. It is not clear from computational or neural models whether these operations are performed within the same or different brain regions. Here, we use repetitive transcranial magnetic stimulation to briefly interfere with neural activity in individually localized regions of human posterior parietal cortex (PPC) that are putatively involved in attending to contralateral locations or shifting attention between locations. Stimulation over right ventral intraparietal sulcus impaired target discrimination at contralateral locations, whereas stimulation over right medial superior parietal lobule impaired target discrimination after a shift of attention regardless of its location. This double dissociation is consistent with neuroimaging studies and indicates that mechanisms of visual selection are partly anatomically segregated in human PPC.mixedCapotosto, Paolo; Tosoni, Annalisa; Spadone, Sara; Sestieri, Carlo; Perrucci, Mauro Gianni; Romani, Gian Luca; Della Penna, Stefania; Corbetta, MaurizioCapotosto, Paolo; Tosoni, Annalisa; Spadone, Sara; Sestieri, Carlo; Perrucci, Mauro Gianni; Romani, Gian Luca; Della Penna, Stefania; Corbetta, Maurizi

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Tissue segmentation of MRI of the head by means of a Kohonen map

    No full text
    We developed a new method in order to automatically segment Magnetic Resonance Images of the head. The main tissues, such as scalp, brain and skull, are recognized. The method is based on a Kohonen Self Organizing Feature Map (KSOFM) which performs a cluster of the image areas into three main classes. The network, after being trained, is successfully operated on the test set. The network performances do not depend on the MRI apparatus producing the images set. The network classes are properly matched and processed in order to obtain slices containing the desired tissues. The proposed method has been developed in the frame of a project for the 3-dimensional reconstruction of selected surfaces

    Spatio-temporal relationships between BOLD and MEG signals at rest or during visuospatial attention

    No full text
    The relationship between fMRI and MEG signals between different cortical regions (functional connectivity, FC) has been extensively analyzed in the resting state (De Pasquale et al 2010; Brookes et al 2011; Hipp et al 2012). Much less is known about FC modulations from rest to task states, and how they appear respectively in these two imaging modalities. Previously we have shown task-specific alterations of FC in fMRI during a visuospatial attention task (Spadone et al., PNAS, 2015). Specifically, decrements of resting correlation in visual areas were coupled with increments of correlation between visual and dorsal attention regions. Here, we compared fMRI with band-limited power (BLP) correlation obtained with MEG on the same group of subjects. Aim (i) is to measure frequency specific task-related FC modulations in MEG. Aim (ii) is to compare fMRI- and MEG-FC modulations (task-rest)

    Directed flow of beta band communication during reorienting of attention within the dorsal attention network

    No full text
    Background: The endogenous allocation of spatial attention to selected environmental stimuli is controlled by prefrontal (frontal eye fields [FEFs]) and parietal (superior parietal lobe [SPL] and intraparietal sulcus [IPS]) regions belonging to the dorsal attention network (DAN) with a subdivision in subsystems devoted to reorienting (or shifting) of attention between locations (SPL) or maintaining attention at contralateral versus ipsilateral locations (ventral IPS [vIPS]). Although previous studies suggested a leading role of prefrontal regions over parietal sites in orienting attention, the spectral signature of communication flow within the DAN for different attention processes is still debated. Methods: We used the directed transfer function (DTF) on magnetoencephalography (MEG) data to examine the causal interaction between prefrontal and parietal regions of the DAN when subjects shifted versus maintained attention to a stream of cued visual stimuli. Results: In the beta band, we found that shift versus stay cues induced stronger connectivity (DTF values) from right FEF to right SPL, in the early phase of reorienting. Conversely, when considering stay versus shift cues, an increase of DTF values and stronger directionality was observed between bilateral vIPS and from right vIPS to FEF. Similar analyses carried out in theta, alpha, and gamma showed no significant frontoparietal increases of DTF for shift versus stay cues, whereas the stay-related increase of DTF observed in beta between ventral parietal areas was preserved in the alpha band. Conclusions: These findings suggest that control processes in DAN regions (in particular between FEF and SPL) can be associated to a beta frequency channel during shift of attention. Impact statement In the present study, we compared the reorienting response to novel stimuli with respect to maintaining response. Results provided new insights into understanding the neural mechanisms of control attention processes by identifying the frequency-specific causal interactions between frontal and parietal regions belonging to the dorsal attention network supporting spatial reorienting response
    corecore